On the polynomial solvability of distributionally robust k-sum optimization

نویسندگان

  • Anulekha Dhara
  • Karthik Natarajan
چکیده

In this paper, we define a distributionally robust k-sum optimization problem as the problem of finding a solution that minimizes the worst-case expected sum of up to the k largest costs of the elements in the solution. The costs are random with a joint probability distribution that is not completely specified but rather assumed to be known to lie in a set of probability distributions. For k = 1, this reduces to a distributionally robust bottleneck optimization problem while for k = n, this reduces to distributionally robust minimum sum optimization problem. Our main result is that for a Fréchet class of discrete marginal distributions with finite support, the distributionally robust k-sum combinatorial optimization problem is solvable in polynomial time if the deterministic minimum sum problem is solvable in polynomial time. This extends the result of Punnen and Aneja (Operations Research Letters, 18(5), 1996) from the deterministic to the robust case. We show that this choice of the set of distributions helps preserve the submodularity of the k-sum objective function which is an useful structural property for optimization problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data-driven Distributionally Robust Polynomial Optimization

We consider robust optimization for polynomial optimization problems where the uncertainty set is a set of candidate probability density functions. This set is a ball around a density function estimated from data samples, i.e., it is data-driven and random. Polynomial optimization problems are inherently hard due to nonconvex objectives and constraints. However, we show that by employing polyno...

متن کامل

Distributionally Robust Project Crashing with Partial or No Correlation Information

Crashing is a method for optimally shortening the project makespan by reducing the time of one or more activities in a project network by allocating resources to it. Activity durations are however uncertain and techniques in stochastic optimization, robust optimization and distributionally robust optimization have been developed to tackle this problem. In this paper, we study a class of distrib...

متن کامل

Distributionally Robust Optimization for Sequential Decision Making

The distributionally robust Markov Decision Process approach has been proposed in the literature, where the goal is to seek a distributionally robust policy that achieves the maximal expected total reward under the most adversarial joint distribution of uncertain parameters. In this paper, we study distributionally robust MDP where ambiguity sets for uncertain parameters are of a format that ca...

متن کامل

A Robust Optimization Approach for a p-Hub Covering Problem with Production Facilities, Time Horizons and Transporter

Hub location-allocation problems are currently a subject of keen interest in the research community. However, when this issue is considered in practice, significant difficulties such as traffic, commodity transportation and telecommunication tend to be overlooked. In this paper, a novel robust mathematical model for a p-hub covering problem, which tackles the intrinsic uncertainty of some param...

متن کامل

Tractable Distributionally Robust Optimization with Data

We present a unified and tractable framework for distributionally robust optimization that could encompass a variety of statistical information including, among others things, constraints on expectation, conditional expectation, and disjoint confidence sets with uncertain probabilities defined by φ-divergence. In particular, we also show that the Wasserstein-based ambiguity set has an equivalen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2017